Acute effect of passive heat exposure on markers of cardiometabolic function in adults with type 2 diabetes mellitus.

Author: Dr. Nicholas Ravanelli

Year: 2022

Full Citation:

Heat therapy is a promising strategy to improve cardiometabolic health. This study evaluated the acute physiological responses to hot water immersion in adults with type 2 diabetes mellitus (T2DM). On separate days in randomized order, 13 adults with T2DM [8 males/5 females, 62 ± 12 yr, body mass index (BMI): 30.1 ± 4.6 kg/m2] were immersed in thermoneutral (34°C, 90 min) or hot (41°C, core temperature ≥38.5°C for 60 min) water. Insulin sensitivity was quantified via the minimal oral model during an oral glucose tolerance test (OGTT) performed 60 min after immersion. Brachial artery flow-mediated dilation (FMD) and reactive hyperemia were evaluated before and 40 min after immersion. Blood samples were drawn to quantify protein concentrations and mRNA levels of HSP70 and HSP90, and circulating concentrations of cytokines. Relative to thermoneutral water immersion, hot water immersion increased core temperature (+1.66°C [+1.47, +1.87], P < 0.01), heart rate (+34 beats/min [+24, +44], P < 0.01), antegrade shear rate (+96 s−1 [+57, +134], P < 0.01), and IL-6 (+1.38 pg/mL [+0.31, +2.45], P = 0.01). Hot water immersion did not exert an acute change in insulin sensitivity (−0.3 dL/kg/min/μU/mL [−0.9, +0.2], P = 0.18), FMD (−1.0% [−3.6, +1.6], P = 0.56), peak (+0.36 mL/min/mmHg [−0.71, +1.43], P = 0.64), and total (+0.11 mL/min/mmHg × min [−0.46, +0.68], P = 0.87) reactive hyperemia. There was also no change in eHSP70 (P = 0.64), iHSP70 (P = 0.06), eHSP90 (P = 0.80), iHSP90 (P = 0.51), IL1-RA (P = 0.11), GLP-1 (P = 0.59), and NF-κB (P = 0.56) after hot water immersion. The physiological responses elicited by hot water immersion do not acutely improve markers of cardiometabolic function in adults with T2DM.

Keywords:

heat shock proteins, insulin, inflammation, microvascular, vascular, heat exposure, diabetes